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I. Preface 

This document serves as a Final Report, summarizing the work performed from 
October 1, 1985 through October 31, 1988 under Grant NAG 2-373 from the NASA 
Ames Research Center. The Principal Investigator for the Grant was Professor 
David A. Caughey of the Sibley School of Mechanical and Aerospace Engineering 
of Cornell University; the Grant Technical Monitor was Dr. W. J. Chyu of the 
Aerodynamics Research Branch of the NASA Ames Research Center. 

I I. A cco m plis hm en t s 

Research was performed in the general area of Computational Aerodynamics, within 
two specific areas: (1) Solution adaptive procedures, and (2) Implicit multigrid 
methods for solving the Euler Equations of inviscid, compressible flows. The Grant 
has supported all or part of the Masters Thesis research of Gabriel Solomon and 
Ravi Iyer, as well as the Ph.D. Thesis research of Dr. Dun C. Liu and Yoram Yadlin. 

Solution Adaptive Grids 

The research on solution adaptive grids has concentrated upon developing the varia- 
tional approach for the solution of inviscid aerodynamic problems. In particular, the 
formulation of a new, directional weighting, functional has been shown to  have de- 
sirable properties. The scheme has been applied to compute the transonic flow past 
twedimensional airfoils using the Euler equations of inviscid, compressible flow [P. 1 , 
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T.11. Figure 1 shows the ‘lift’ and ‘drag’ plots of pressure distributions (pressure 
coefficient plotted versus z / c  and y/c, respectively) for the symmetrical non-lifting 
flow past an NACA 0012 airfoil at 0.800 Mach number. This solution was computed 
on a smooth (i.e., non-adapted) grid, and differences can be seen between the solu- 
tion and a reference solution computed on a much finer grid. The grid computed 
using the directional adaptation procedure is shown in Figure 2. Figure 3 shows 
the lift and drag pressure distributions for the solution computed on this adapted 
grid, again compared with the reference solution computed on a much finer mesh. 
The improvement in the agreement is clearly seen. Figures 4, 5 ,  and 6 show similar 
results for a lifting case, corresponding to  flow past the same airfoil a t  an angle of 
attack of 2.0 degrees and 0.80 Mach number. The adapted grid, shown in Figure 
5 shows clustering toward the shock surface, but relatively little clustering in the 
direction along the shock ~urface, as desired. Again, comparison of Figure 6 with 
the smooth-grid results of Figure 4 shows significant improvement in the accuracy 
of the computed pressures. Further details regarding the method, and additional 
results, can be found in References [P.1, T.11. 

The variational technique has also been used to generate solution-adaptive grids 
for the computation of the transonic cross-flow on delta wings using the potential 
approximation [T.2]. Figures 7 and 8 show a comparison of the solutions computed 
on smooth and adapted grids for one case. Contours of constant pressure are plotted 
for the Mach 2.0 flow past a flat elliptical-cone wing. The results using the adapted 
grid, shown in Figure 8, clearly resolve the shock more sharply than the smooth grid 
results of Figure 7. Two details of the adapted grid are shown in Figures 9 and 10; 
the clustering of grid lines near both the cross-flow shock (Figure 9) and the bow 
shock (Figure 10) are clearly seen. 

Diagonal Implicit Multigrid Algorithm 

A Diagonalized Implicit Multigrid Scheme has also been developed to solve the Euler 
equations, and has been applied to  the calculation of transonic flows past airfoils 

The scheme has also been extended to compute supersonic flows through and 
around twedimensional inlets [P.6, T.31. Figure 11 shows the grid system used for 
the calculation of the flow through an inlet studied earlier by NASA researchers 
(Pulliam and Chaussee). Figure 12 shows contours of constant pressure for the flow 
into the inlet at a freestream Mach number of 2.0. The bow wave, as well as many 
reflections of the wave systems within the inlet, are well captured. Figure 13 shows 
the distribution of pressure on the center-body surface, compared with the results of 
Pulliam and Chaussee. The results are generally in good agreement, with the results 
of the present method maintaining a much sharper representation of the reflected 
wave systems deep into the inlet. Finally, Figure 14 shows the convergence histories 
of calculations using different numbers of multigrid levels. The scheme using 3 
levels of multigrid converges nearly three times as fast as the single level scheme. 

[P.2 - P.51. 
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The speed-up is not as impressive as that usually obtained for transonic flows, as 
the implicit solver marches the solution to its final steady state quite efficiently for 
flows which are entirely supersonic. 

The Diagonal Implicit Multigrid method has also been applied to solve the 
Euler equations for three-dimensional problems, including the transonic flow past 
swept wings [P.7]. One such solution is shown in Figures 15 and 16. The upper and 
lower surface pressure distributions on the ONERA M-6 wing at 0.84 Mach number 
and 3.06 degrees angle of attack is shown in Figure 15; the contours of constant 
pressure on the wing upper surface, clearly showing the ‘lambda’ shock pattern, 
are shown in Figure 16. These results are computed on a “C”-grid containing 
192 x 32 x 32 mesh cells in the wraparound, wing-normal, and spanwise directions, 
respectively. The convergence history for this solution, computed on a single grid 
using the implicit solver, is shown in Figure 17. Similar convergence results are 
plotted for a calculation using five levels of multigrid are shown in Figure 18. Not 
only is the asymptotic rate of error reduction much improved, but the global features 
of the solution, including the force coefficients and the size of the supersonic pocket, 
have converged to within plottable accuracy in the equivalent of about 30 time steps. 
Current research is focussed upon the extension of the diagonal implicit multigrid 
scheme to block structured grids for three-dimensional problems [T.4]. Results have 
been obtained using the block-structured algorithm in two dimensions, including a 
parallel implementation on the multi-processing IBM 3090-6003 computer [P.8]. 

111. Appendices 

Copies of the abstracts of completed theses [T.1 - T.31 are attached as appendices 
t o  this report. 
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AN ADAPTIVE GRID TECHNIQUE FOR SOLUTION OF 
THE EULER EQUATIONS 

Dun Charles Liu, Ph.D. 
Cornell University, 1987 

In order to reduce errors associated with large solution gradients, under 

the constraint of a fixed number of grid points, it is desirable to have the 

grid clustered in regions of large gradient and loosely arranged in regions of 

small gradient. Such mesh systems cannot be constructed without 

knowledge of the behavior of the solution. As a result, the idea of solution 

adaptive grid generation has been one of the most important research areas 

in computational fluid dynamics in the past few years. 

The grid equations in this work are formed from a linear combination 

of the Euler-Lagrange equations derived from functionals measuring 

smoothness, orthogonality and concentration (Brackbill and Saltzman 

[ 19821). Since the weight function included in the concentration functional 

proposed by Brackbill and Saltzman 119821 is a scalar, no restriction in the 

direction of changing cell dimensions can be attained. A directional- 

concentration functional is here proposed to take this directional effect into 

consideration. Some salient features of the grid equations are explored by 

examining the existence of characteristic lines. The adaptive grid technique 

is applied to solve a finite-volume approximation to the Euler equations for 

the transonic flow in quasi-one-dimensional nozzles and past two- 

dimensional airfoils. For the airfoil problem, grid boundary conditions 

which eliminate grid skewness near the boundary are suggested. The grid 

equations with properly assigned boundary conditions are solved using a 



numerical scheme that is iterative and explicit. The multigrid method is 

incorporated to facilitate convergence when solving the grid equations. The 

procedures that involve searching the new neighbors of the adapted grid 

points and the subsequent interpolating process for defining flow variables 

at the new cell centers are designed to avoid the introduction of excessive 

perturbations to the flow calculations. 

To speed up the convergence of the flow calculation, a new four stage 

coefficient set used in the Runge-Kutta scheme is derived, based upon the 

idea of reducing the growth factor in the high wavenumber region of the 

error spectrum. From the results of the test cases, significant improvement 

in the convergence rate is observed after incorporating the new R-K 

coefficients to the flow solver. 

Transonic flows in quasi-one-dimensional nozzles and over the two- 

dimensional airfoils are solved on the various solution-adaptive-grids to 

demonstrate the applicability of the proposed directional-concentration func- 

tional and the grid adaptation process from the standpoint of improving the 

solution accuracy and demonstrating the overall convergence. 



SOLUTION ADAPTIVE MESH CALCULATIONS OF CONICAL POTENTIAL FLOWS 
Gabriel Mark Solomon 

ABSTRACT 

In order to reduce errors associated with large solution gradients, d e r  

the constraint of a fixed number of grid points, it is desirable to have the grid 

clustered in regions of large gradient, and more widely spaced in regions of 

small gradient. Such mesh systems cannot be constructed without knowledge 

of the behaviour of the solution. As a result, the idea of solution adaptive 

grid generation has been steadily gaining importance in recent years. 

The grid equations in this work are formed from a linear combination 

of the Euler-Lagrange equations derived from functionals measuring smooth- 

ness, orthogonality, and concentration. The adaptive grid technique is ap- 

plied to solve a finitedifference approximation to the full potential equation, 

for an elliptical cone inclined to a supersonic flow. For this problem, grid 

boundary conditions which eliminate grid skewness near the boundary are 

incorporated. The grid equations with properly assigned boundary condi- 

tions are solved using a numerical scheme that is iterative and explicit. The 

multigrid method is incorporated to facilitate convergence. 

A new scheme for the artificial viscosity in the flow equations, suggested 

by D. A. Caughey, has also been implemented, and found to remove mors 

that occured in the flow solution on highly stretched grids. 



DIAGONAL IMPLICIT MULTIGRID SOLUTION OF THE EULER EQUATIONS 
FOR TWO - DIMENSIONAL INLETS 

Ravi Kumar Iyer 

ABSTRACT 

A diagonal implicit multigrid algorithm is developed for the calculation of 

two-dimensional transonic flow using the Euler equations. Spatial discretiza- 

tion is performed using a finite-volume formulation on a body-fitted mesh. A 

blended second- and fourth-difference artificial dissipation is added to elimi- 

nate odd and even point oscillation and shock overshoots. For computational 

efficiency, a diagonalization procedure is used, leading to the solution of scalar 

pentadiagonal systems along each line in each direction. Further convergence 

acceleration to the steady state solution is achieved by the incorporation of 

the multigrid method into the algorithm. The scheme is used to compute 

the flow around a supersonic inlet and a comparison is made with previously 

published results to demonstrate the increased efficiency of the method. 
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Near airfoil 
Grid 128x 32 Iter= 300 

Window size X1 = 25.2 X2 = 26.7 
Fig.2. Solution-adapted grid for nonlifting case computed 

using directional weighting function. 
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Near airfoil 
Grid 128x 32 Iter= 300 

Window size X1 = 25.2 X2 = 26.7 
Fig. 5 . Grid system adapted to l i f t i n g  Case B using direct ional  

weighting function. 
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Figure 7: Detail of pressure con tour s -on  original 128 x 64 grid. 
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Figure 8. I ': Detail of pressure contours-on adapted 128 x 64 grid. 



. I  

Figure 9. Detail of adapted  128 x 64 grid-near cross-flow shock. 

Figure 10: Detail of adapted 128 x 64 grid-near bow shock. 
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Grid 128x 32 

Figure 11. Grid geometry for NASA two-dimensional inlet. 
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NASA Inlet 
Minimum = -.2000Ed)o Incrmnt - 0.2500E-01 

Scale - 0.1000Ei-04 Pressure contours Maximum - 0.8000E40 
Figure 12. Contours of constant pressure for NASA inlet; 

free stream Mach number is 2.0. 
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Figure 13. Pressure d is t r ibu t ion  on centerbody 
surface of NASA i n l e t ;  f r e e  stream 
Mach number'*is 2.0. 
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Upper Surface Pressure Lower Surface Pressure 
ONERA WING M6 
Mach 0.839 Alpha 3.060 
C1 0.2989 Cd 0.0128 Cm -0.2303 
Grid 192x32~32 Work 150.71 Res 0.216E-04 + + 

Figure 15.  Wing surface pressure d i s t r i b u t i o n  for ONERA 
t e s t  case. 
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ONERA WING M6 
Minimum = 0.2000E+00 pressure contours Incnnnt = 0.2500E-01 

Maximum = 0.160OE+O1 Upper Surface 

Figure 16. Contours of constant 
of ONERA wing M6. 
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Figure 17. Convergence history for ONERA test case; implicit 
smoothing algorithm without multigrid. 
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Figure 18. Convergence history for ONERA test case; implicit 

smoothing algorithm with 5 levels of multigrid. 


